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Abstract
Eigenmode analysis of ideal magnetohydrodynamic (MHD) systems with flows is performed. It is shown that
the energy of stable oscillatory modes (waves) can be both positive and negative. Negative energy waves always
correspond to non-symmetric modes which are nonuniform along the direction of the flow. Coupling of negative
and positive energy waves is shown to be a universal mechanism of non-symmetric MHD instabilities in flowing
media. To study the stability of non-symmetric modes, a new variational approach is developed based on Lyapunov
theory. This approach provides a sufficient and (under some assumptions) necessary stability condition. Specific
examples are given to illustrate the developed approach.

PACS numbers: 47.20.Ft, 47.35.Tv, 52.30.Cv, 52.35.Py

1. Introduction

Stability study of rotating plasmas is of great current interest
in many applied and fundamental problems. Rotation is a
common phenomenon in modern fusion experimental devices
(such as tokamaks) where it is believed to stabilize kink and
resistive wall modes and suppress turbulence [1]. Plasma
rotation plays an important role in forming regimes with
improved confinement in tokamaks [2]. At the same time,
plasma rotation in the presence of a magnetic field may
lead to destabilizing effects, for example, magnetorotational
instability (MRI) which is widely accepted now as a source
of turbulence and angular momentum transport in accretion
discs [3].

The behaviour of many plasma systems is well described
by ideal magnetohydrodynamics (MHD). The majority of
stability studies in MHD are related to the spectral method—
analysis of the eigenvalues of the dynamic operator linearized
near the equilibrium state. The methodological difficulty of
correct spectral stability analysis is in the necessity of finding
not only the eigenvalues of the linearized system but also
the corresponding eigenvectors, which have to satisfy the
particular boundary conditions. Besides, in the case of systems
with plasma flows the linearized operator of dynamics becomes
non-Hermitian (non-self-adjoint), therefore its eigenvalues are
generally complex [4]. As a result, the spectral stability study

of such systems constitutes a very challenging mathematical
problem and is often restricted to simple geometries.

Another way to make a judgement about the stability
of the equilibrium state is to use variational methods, e.g.
Lyapunov theory. According to the Lyapunov stability theorem
the stability of the equilibrium state of a dynamical system
is guaranteed if there is a Lyapunov functional—an integral
of motion which has a strict local minimum (maximum) at
the equilibrium state. There is no regular way to construct
a Lyapunov functional. For conservative systems (such as
ideal MHD) a natural Lyapunov functional candidate is the
total energy of the system. This choice results in the well-
known energy principle, first realized in [5] for static MHD
equilibrium: if the change in potential energy is positive for any
small deviations of a conservative system from the equilibrium
state, then such an equilibrium state is stable. From a practical
point of view it is important that in the case of a static
equilibrium the energy principle gives a condition which is
both sufficient and necessary (i.e. a criterion) not only for
spectral [6] but also for nonlinear stability [7].

Note for clarity that the perturbation of potential energy
cannot be made strictly positive definite in terms of general
plasma displacement—there are always nontrivial neutral
displacements that do not change the potential energy. In
static MHD configurations with nested magnetic surfaces, such
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displacements are covered by fluid element relabellings and
do not perturb any physical quantity [7]. Therefore, they
can be taken out of the analysis. There is no analogous
statement for MHD equilibria with flows. In this case, positive
semi-definiteness of perturbed potential energy still assures
the spectral stability (the absence of exponentially growing
perturbations) but does not provide a conclusion about the
possibility of perturbations growing slower.

In contrast to the static case, in the presence of stationary
plasma flow the energy principle gives only the sufficient
stability condition, which is normally too restrictive and
can almost never be satisfied [8]. Limited applicability of
the energy principle to MHD systems with flows can be
explained by the existence in such systems of negative energy
waves (NEWs)—stable oscillatory eigenmodes, excitation
of which leads to a decrease in the total energy of the
system [9]. Different attempts have been made to find a
variational approach which generalizes the energy principle
for the systems with flows [8, 10–13]; however, this problem
is still far from a complete solution. The approach proposed in
this paper is an extension of the variational method developed
in [13].

The structure of the paper is as follows. In section 2, we
investigate the energy of waves in a linearized MHD system
and point out the important role of NEWs in the instabilities of
plasma flows. In section 3, we consider as an example a system
which can be unstable with respect to MRI. In section 4, we
suggest a variational approach suitable for the stability study
of flowing plasma. Our approach is based on the construction
of a Lyapunov functional for linearized MHD systems, which
is usually referred to as formal stability analysis. In section 5,
the potential applications of our approach are discussed.

2. Energy of eigenmodes in ideal MHD

A lot of important physical information can be revealed from
the analysis of the energy of eigenmodes in the framework of
ideal MHD. To do this, we start from the well-known linearized
dynamic equation for plasma displacement vector ξ [4],

ρξ̈ + 2ρ(V · ∇)ξ̇ − F(ξ) = 0, (1)

where the dot denotes a partial time derivative, ρ and V are
stationary values of fluid density and velocity, respectively.
The general form of linearized force operator F(ξ) in ideal
MHD is

F(ξ) = −ρ(V · ∇)2ξ + ρ(ξ · ∇)(V · ∇)V + ∇ · (ρξ)(V · ∇)V

− ∇δP +
1

4π
(∇ × δB) × B +

1

4π
(∇ × B) × δB.

Here, B is the equilibrium magnetic field and δB = ∇×(ξ×B)

is its perturbation. The perturbation of fluid pressure δP can
be specified by the thermodynamic properties of the system.
For example, if the process is adiabatic with adiabatic index γ

then δP = −ξ · ∇P − γP∇ · ξ. In the case of incompressible
MHD, such an equation appears to be excessive, instead one
has to impose the incompressibility condition ∇ · ξ = 0.

A number of formal properties of (1) can be established.
Force operator F(ξ) is Hermitian (self-adjoint) in the following
sense: ∫

η · F(ξ) d3r =
∫

ξ · F(η) d3r, (2)

while the second term in (1) is anti-Hermitian:∫
ρη · (V · ∇)ξ d3r = −

∫
ρξ · (V · ∇)η d3r. (3)

Integration in (2) and (3) is performed over the fluid volume
under the assumption that displacements at the plasma
boundary vanish to avoid consideration of boundary and
vacuum region perturbations. In order to take into account the
possibility of such instabilities as external kink mode, more
general boundary conditions providing properties (2) and (3)
can be used.

A normal-mode solution to (1) has the form

ξ(r, t) = ξ̂(r)e−iωt . (4)

Then (1) leads to the eigenvalue problem

ω2ρξ̂ + 2iωρ(V · ∇)ξ̂ + F(ξ̂) = 0.

Multiplying this equation by complex conjugate ξ̂
∗

and
integrating over the fluid volume, we arrive at a quadratic
equation for eigen-frequency ω,

Aω2 − 2Bω − C = 0, (5)

where A = ∫
ρ|ξ̂|2 d3r, B = −i

∫
ρξ̂

∗ · (V · ∇)ξ̂ d3r and

C = − ∫
ξ̂

∗ · F(ξ̂) d3r are real by definition. The solution to
(5) is

ω = B + s
√

B2 + AC

A
, (6)

where either s = 1 or s = −1 for a particular eigenmode.
Therefore, eigenmode is unstable only if B2 + AC < 0.

The dynamics described by (1) provides conservation of
energy

E = 1
2

∫
(ρ|ξ̇|2 − ξ∗ · F(ξ)) d3r, (7)

where the displacement ξ is assumed to be complex.
Substituting ξ from (4), we obtain the energy of the eigenmode

E = 1
2 (A|ω|2 + C)e2γ t , (8)

where γ = Im(ω). Since energy is conserved, E in (8)
cannot depend on time and must be equal to zero for any
unstable eigenmode with γ �= 0. Indeed, it can be easily
proved for B2 + AC < 0 by substitution of ω from (6) into
(8). The potential energy of the unstable eigenmode decreases
with time (becomes more negative) as it is transferred to the
exponentially growing kinetic energy, but its total energy stays
at zero at any time, E = 0. This statement applies to both static
equilibria and equilibria with flows.

The energy of the stable eigenmode with γ = 0 is given
by

E = sω
√

B2 + AC, (9)

and can be either positive (positive energy wave, PEW) or
negative (negative energy wave, NEW). The latter is realized
for eigenmodes with −B2/A < C < 0 and sign(B) =
−s. All NEWs are non-symmetric modes, i.e. they have
spatial dependence along the equilibrium flow, so B �= 0
(eigen-spectrum formed by non-symmetric modes is non-
symmetric about the imaginary axis in the complex ω-plane).
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As discussed in [9], there is an interval of equilibrium
parameters at which non-symmetric modes with positive and
negative energies can coexist. This is valid in general
for small-amplitude waves in moving media described by a
Lagrangian [14]. When the frequencies of two waves with
different signs of energy merge (resonance condition), the
energy can be transferred from the NEW to the PEW leading
to instability. In fact, such coupling of the NEW and the PEW
is a universal mechanism of any non-symmetric instability in
an ideal MHD system with flow.

The eigenmodes with purely real or purely imaginary
eigenvalues, which form an eigen-spectrum symmetric about
the origin, are defined here as symmetric eigenmodes. In
particular, they correspond to static equilibrium or modes
without spatial dependence along the equilibrium flow; in
these cases B = 0. If we change the equilibrium parameters
of the stable system, symmetric instability occurs only after
two real eigenvalues merge at zero frequency and then
become imaginary. Energies of symmetric eigenmodes are
never negative, which is why their stability is successfully
investigated by the use of the energy principle. In the case of
non-symmetric modes, the energy principle fails if the NEW
can be excited in the system; therefore, modified approaches
should be used. Such approaches are developed below.

3. Magnetorotational instability

Consider the energies and frequencies of eigenmodes of
incompressible conducting fluid with uniform density ρ

rotating in a homogeneous transverse magnetic field B =
B0ez. The equilibrium velocity profile used in our calculations
corresponds to the electrically driven flow in the circular
channel and has the form

V = r�(r)eϕ, �(r) = �1r
2
1

r2
(10)

in a cylindrical system of coordinates {r, ϕ, z}. Here, r1

and r2 are the inner and outer radii of the channel (we take
r2/r1 = 5), respectively, and �1 is the angular velocity
at r1. A detailed stability analysis of such flow has been
performed in [9, 15], assuming normal modes in the form
ξ(r, t) = ξ(r) exp(−iωt + imφ + ikzz).

In figure 1 the dependences of the frequencies of
axisymmetric (m = 0) and non-axisymmetric modes (m = 1)
on the equilibrium parameter �1/ωA are shown, where ωA is
the Alfven frequency defined as

ωA = kzB0√
4πρ

.

In this example, axisymmetric eigenmodes are symmetric in
terms of the eigen-spectrum. These modes have positive
energy when they are stable (figure 1(a)). The merging point
of two branches in figure 1(a) corresponds to �1/ωA ≈ 2.0,
which is the threshold of MRI for m = 0. The nature of
axisymmetric MRI is not related to the subject of NEWs and
can be explained by the mechanism similar to one of Rayleigh–
Taylor instability [16].

For m = 1 modes (non-symmetric in terms of the eigen-
spectrum, figure 1(b)), both positive and negative energy waves
can coexist in the system when �1/ωA > 1. The threshold of
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Figure 1. Dependence of eigen-frequencies on the normalized value
of angular velocity �1/ωA for (a) axisymmetric modes with m = 0,
and (b) non-axisymmetric modes with m = 1. Solid lines
correspond to PEWs, dashed lines—to NEWs, dotted lines represent
the real part of frequency in the unstable region. The value of nr

denotes the radial wave-number, i.e. the number of zeros in the
radial direction of the corresponding eigenfunction.

instability in this case is �1/ωA ≈ 1.7 (it corresponds to the
radial mode with nr = 0), when frequencies of the NEW and
the PEW are coincident, which is in agreement with the above
discussion.

We note that the eigen-spectrum of the system under
consideration has a specific property: in the stable region all
NEWs have frequencies localized in the interval ω ∈ (0, ω0)

and there are no PEWs in this interval (see figure 1(b)). For
the given equilibrium (i.e. for a fixed value of �1/ωA), the
upper boundary ω0 is always positive; in the case of marginal
stability (�1/ωA ≈ 1.7) it corresponds to the merging point of
two branches with radial wave-number nr = 0 (ω0 ≈ 0.8ωA).

Such a property of the eigen-spectrum prompts us in
an elegant way to modify the energy principle. Suppose
we consider perturbations in the reference frame that rotates
around the z-axis with constant angular velocity �0, which is
analogous to the following substitution in (1):

ξ = ξ̃(r, z, t)eim(ϕ−�0t) (11)

(due to axisymmetry of equilibrium we consider perturbations
with different m separately). In terms of the eigen-spectrum,

3
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this consideration is equivalent to a shift of all eigen-
frequencies according to the rule ω̃ = ω − m�0. Choosing
�0 = ω0/m, where ω0 is the upper boundary of the NEWs’
frequency interval in the laboratory reference frame and m �=
0, we change the sign of frequencies of all NEWs and,
therefore, we change the sign of their energies (see (9)). As
a result, NEWs are eliminated in the rotating reference frame
and the usual energy principle can be applied to establish a
sufficient condition for spectral stability.

With substitution (11), the linearized equation of
dynamics (1) becomes

ρξ̈ + 2ρ(V · ∇)ξ̇ − 2iω0ρξ̇ − F̃(ξ) = 0

(we omit the tilde in ξ̃ to simplify the notation). Here ω0 =
m�0 and F̃(ξ) is the ‘shifted’ force operator:

F̃(ξ) = ω2
0ξ + 2iω0ρ(V · ∇)ξ + F(ξ).

The potential energy of arbitrary displacement ξ in the moving
reference frame is

W̃ (ξ) = − 1
2

∫
ξ∗ · F̃(ξ) d3r = − 1

2

∫
(ω2

0|ξ|2

+ 2iω0ρξ∗ · (V · ∇)ξ + ξ∗ · F(ξ)) d3r. (12)

Since ω0 is not known a priori, we reformulate the energy
principle in the following theorem, taking into account the
presence of neutral eigenmodes in the system—modes with
ω̃ = 0, which may be linearly unstable but do not affect the
spectral stability.

Theorem 1. If there exists such real ω0 that the potential
energy (12) is positive semi-definite, i.e. if W̃ (ξ) � 0 for any
ξ, then the equilibrium state is spectrally stable.

We use this theorem to investigate the stability of the
system described above. In this case the stability condition is∫ r2

r1

((ω2
A − ω̄2)|ξ|2 + 2iω̄�(ξ ∗

r ξϕ − ξrξ
∗
ϕ )

+ r(�2)′|ξr |2)r dr � 0, (13)

where ω̄ = ω0 − m�(r) and the prime denotes the radial
derivative ∂/∂r .

First, let us examine the stability of axisymmetric
perturbations. We have m = 0 and �0 = 0; therefore (13)
after minimization over ξϕ gives∫ r2

r1

(
ω2

A

(
|ξr |2 +

1

k2
z r

2
|(rξr)

′|2
)

+ r(�2)′|ξr |2
)

r dr � 0,

(14)

where the incompressibility condition ∇ ·ξ = 0 has been used.
Condition (14) is a classical result of Chandrasekhar [17],
which states that the rotation in an axial magnetic field is stable
for perturbations with m = 0 if the angular speed, |�(r)|, is a
non-decreasing function of radius r .

We consider now the stability of rotation profile (10)
with respect to perturbations with given azimuthal number
m �= 0. Since a conditional minimum is not less than the
absolute minimum, we strengthen inequality (13) considering
all components of ξ as independent ones (in incompressible

fluid they are related by ∇ · ξ = 0). Minimizing (13) over ξz

and ξϕ we arrive at the condition

(ω2
A − ω̄2) � 1

2

( − [r(�2)′ + 4�2]

+
√

[r(�2)′ + 4�2]2 + 16�2ω2
A

)
, (15)

which has to be satisfied at any radius from the interval
r ∈ [r1, r2]. For the rotation given by (10), the term in square
brackets is zero. Then inequality (15) leads to estimates for ω0:

max
r∈[r1,r2]

(
m�(r) −

√
ω2

A − 2ωA�(r)
)

� ω0 � min
r∈[r1,r2]

(
m�(r) +

√
ω2

A − 2ωA�(r)
)
.

Finally, the stability of the modes with azimuthal number m is
guaranteed if

�1 �
−4ωA +

√
16ω2

A + 4m2ω2
A(1 − r2

1 /r2
2 )2

m2(1 − r2
1 /r2

2 )2
. (16)

It should be stressed here that in the considered example
inequality (13) is also necessary for spectral stability, i.e. if it
is not satisfied for some ξ at any ω0 then the system is unstable.
This fact follows from the properties of the eigen-spectrum of
the system: (1) all NEWs in the stable region can be eliminated
from the eigen-spectrum by simple transition to some moving
reference frame; (2) in that reference frame the system does
not have neutral eigenmodes (this is true only if kz �= 0). In
general, MHD systems do not possess properties (1) and (2),
so the necessary condition for their spectral stability cannot be
established by means of theorem 1.

Taking ξr = 0 in (13) one can conclude that rotation (10)
becomes unstable when there exists a radius r ∈ [r1, r2], which
makes

ω2
A − ω̄2 < 0

for any ω0. This is satisfied only if

�1 >
2ωA

m(1 − r2
1 /r2

2 )
. (17)

From conditions (16) and (17) it follows that at large m the
threshold of MRI decreases with m as

�1 = 2ωA

m(1 − r2
1 /r2

2 )
.

This result is in agreement with [9, 15].
Theorem 1 can be used only for systems with a very

special form of eigen-spectra. In the next section we develop
a method for a stability study that works under more general
assumptions.

4. Lyapunov stability criterion for plasma flows

It would be ideal to construct an integral of motion of
equation (1) which gives a stability criterion (sufficient and
necessary condition), i.e. it has a local minimum at the
equilibrium state if and only if the equilibrium is stable. In
conservative systems a natural first try for such an integral
is the energy (7). Treating ξ̇ and ξ as independent variables

4
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and minimizing functional E(ξ̇, ξ) over ξ̇ which contributes
only into non-negative kinetic energy, we arrive at the spectral
stability condition in the form

W(ξ) = − 1
2

∫
ξ∗ · F(ξ) d3r � 0, (18)

which is the well-known energy principle [5].
For static MHD equilibria (V = 0) the energy principle is

exhaustive (with reservations mentioned in the introduction),
i.e. it gives a stability criterion [6]. In the case of MHD
equilibria with flows (V �= 0), condition (18) originally
obtained in [4] is only sufficient for spectral stability. For
symmetric perturbations in moving plasmas this condition
sometimes appears to be very stiff (far from the necessary one),
while for non-symmetric perturbations it may not be satisfied
at all if the NEW can be excited in the system.

For MHD equilibria with flows the energy principle can
be improved if one takes into account that the displacements
ξ̇ and ξ in (7) are not completely independent but related
by constraints inherent in dynamics (1). In particular, if
equation (1) has other invariants (integrals of motion), the local
minimum of the energy functional E(ξ̇, ξ) has to be established
only for a class of displacements that do not change these
invariants. Mathematically, these ideas have been formulated
by Arnold [18–20] in the following theorem.

Theorem 2 (Arnold). Let x0 be an equilibrium point of the
system ẋ = f (x), i.e. f (x0) = 0. Suppose that the
system ẋ = f (x) has a set of first integrals (invariants)
E(x), I1(x), . . . , Ik(x). Consider their linear combination:

U(x) = E(x) + λ1I1(x) + · · · + λkIk(x).

Suppose that there exist Lagrange multipliers λ1, . . . , λk such
that:

(1) the first variation of U(x) is zero at x0, i.e.

δU(x0) = δE(x0) + λ1δI1(x0) + · · · + λkδIk(x0) = 0;
(2) the second variation of U(x) at x0

δ2U(x0) = δ2E(x0) + λ1δ
2I1(x0) + · · · + λkδ

2Ik(x0)

is sign-definite on a subspace δI1(x0) = 0, . . .,
δIk(x0) = 0.

Then U(x) is a Lyapunov functional and the equilibrium point
x0 is stable.

It is obvious that the more invariants that are taken into
account the closer the Lyapunov stability condition will be
to a necessary stability condition. Therefore, Arnold’s method
is reduced to the search for additional invariants inherent in the
dynamical system and analysing conditional extremum of the
energy functional.

4.1. Stability of symmetric perturbations

The results of sections 2 and 3 suggest that symmetric and non-
symmetric eigenmodes in MHD systems with plasma flows
have quite different properties. This allows us to distinguish
between symmetric and non-symmetric perturbations which
are linear combinations of corresponding eigenmodes. In
stability analysis we can consider these two types of

perturbations separately if they are not coupled by equation
of dynamics (1), i.e. if any symmetric perturbation evolves
independently of any non-symmetric perturbation. Such an
assumption is usually valid for simple geometries (as in the
example of section 3, where perturbations with different m are
independent), but may also be true in more general cases.

We begin our analysis with symmetric perturbations.
First, we stress here again that the energy of symmetric
eigenmodes is never negative (even if B �= 0 in (5), then
sign(B) = s and E � 0 in (9)). Since the energy of stable
eigenmodes (waves) is additive (theorem 4 in appendix A), the
energy of any symmetric perturbation cannot be made negative
unless the system has an unstable symmetric eigenmode.
This means that positive semi-definiteness of the energy
functional gives a spectral stability criterion against symmetric
perturbations if all additional constraints for ξ and ξ̇ are taken
into account.

The additional constraints may be related to other
conservative quantities, such as momentum or its components,
appearing in the system due to certain geometrical or
topological symmetries. The corresponding invariant for
equation (1) is expressed in terms of the neutral displacements
ξN [7, 13]—eigenmodes with ω = 0, satisfying

F(ξN) = 0. (19)

Indeed, taking the scalar product of equation (1) and ξN ,
integrating over the plasma volume and using definition (19)
and property (2), we obtain a conservation law in the form
İ = 0, where

I =
∫

(ρξN · ξ̇ + 2ρξN · (V · ∇)ξ) d3r. (20)

According to Arnold’s theorem, we have to investigate
the sign of the energy functional E(ξ̇, ξ) only for the
displacements satisfying I (ξ̇, ξ) = 0. Condition I = 0,
where I is given by (20), can be resolved explicitly for ξ̇.
Representing ξ̇ as

ξ̇ = −2(V · ∇)ξ + ζ, (21)

and substituting (21) in (20), one obtains equation∫
ρζ · ξN d3r = 0, (22)

which has to be satisfied for every neutral displacement ξN . As
follows from Fredholm’s theorem (theorem 6 in appendix B),
this condition is satisfied if and only if

ζ = F(η)

ρ
, (23)

where η(r) is arbitrary vector-function. Therefore, the
constraint I = 0 yields the local relation between ξ̇ and ξ:

ξ̇ = −2(V · ∇)ξ +
F(η)

ρ
. (24)

Substitution of ξ̇ from (24) into energy functional (7) gives
the following sufficient condition for spectral stability:

EI (η, ξ) = 1
2

∫ (
1

ρ
|F(η) − 2ρ(V · ∇)ξ|2

− ξ∗ · F(ξ)

)
d3r � 0. (25)

5
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For symmetric perturbations this condition is also necessary
for spectral stability if invariant (20) covers all possible linear
constraints for ξ̇ and ξ. The minimization of the functional
EI (η, ξ) over η in systems with nested magnetic surfaces
results in the stability condition obtained by different methods
in [8, 11, 12]. We note that such minimization leads to the
result different from the standard energy principle (18) only
if ρ(V · ∇)ξN �≡ 0 for some neutral displacement ξN . That
explains why the sufficient stability condition (14) obtained
from the energy principle (18) is also necessary for the stability
of symmetric modes (modes with m = 0)—the corresponding
force operator does not have neutral displacements in that case
if kz �= 0.

4.2. Stability of non-symmetric perturbations

It is clear that for non-symmetric perturbations even the
improved energy principle (25) fails if the NEW can be excited
in the system. For this reason, other invariants should be
involved in the analysis. As shown in [13], the linearized
system (1) has an infinite set of exact invariants:

En = 1
2

∫
(ρ|ξ(n+1)|2 − ξ∗(n) · F(ξ(n))) d3r, (26)

where ξ(n) is the nth time derivative. Generally, these integrals
are independent. E0 corresponds to the energy (7), higher order
invariants (26) have no obvious nonlinear analogues. Using the
recurrence relation, which follows immediately from (1),

ξ(n+2) = −2(V · ∇)ξ(n+1) +
F(ξ(n))

ρ
,

all integrals (26) can be expressed in terms of displacements ξ̇
and ξ. In particular,

E1(ξ̇, ξ) = 1
2

∫ (
1

ρ
|F(ξ) − 2ρ(V · ∇)ξ̇|2 − ξ̇

∗ · F(ξ̇)

)
d3r,

which is similar in structure to invariant EI (25).
Following Arnold’s theorem, we incorporate integrals of

motion (26) into a Lyapunov functional candidate by means of
Lagrange multipliers λn:

U(ξ̇, ξ) =
N∑

n=0

λnEn(ξ̇, ξ). (27)

Theorem 3 gives sufficient condition for spectral stability of a
system described by (1).

Theorem 3. If there exist such real numbers λn and integer
N ∈ [0, ∞) that U(ξ̇, ξ) � 0 for all ξ̇ and ξ, then form (27) is
a Lyapunov functional, and the equilibrium state is spectrally
stable.

Theorem 3 under certain assumptions also provides the
necessary condition for spectral stability, i.e. if the system is
stable then there are such λn which make functional U non-
negative for any perturbations.

To demonstrate this, consider a stable system (all
eigenvalues ωj are real). The general solution to (1) is a linear
combination of eigenmodes ξj

ξ =
∑

j

cjξj . (28)

For any given initial conditions (i.e. ξ|t=0 = ξ0, ξ̇|t=0 = ξ̇0),
coefficients cj are uniquely specified. According to theorem 4
(appendix A), integrals (26) for displacement vector (28) can
be expressed as

En(ξ) =
∑

j

ω2n
j |cj |2E(ξj ),

where E(ξj ) is the energy of the j th eigenmode. Then
the value of the Lyapunov functional candidate (27) for
displacement (28) is

U(ξ) =
N∑

n=0

λn

∑
j

ω2n
j |cj |2E(ξj )

=
∑

j

|cj |2E(ξj )

N∑
n=0

ω2n
j λn. (29)

In order to make this expression positive for any initial
perturbation, we have to ensure that it is positive for every
eigenmode independently. This results in conditions

λ0 + ω2
kλ1 + ω4

kλ2 + · · · > 0 for every PEW,

λ0 + ω2
l λ1 + ω4

l λ2 + · · · < 0 for every NEW.

If these inequalities are satisfied simultaneously by some
choice of {λn} then theorem 3 also gives the necessary
condition for spectral stability (this is always true for the
systems with a countable set of eigenfunctions). We have to
emphasize again that (29) is valid for oscillatory modes only.
For unstable or decaying modes functional U(ξ̇, ξ) given by
(27) cannot be reduced to the form (29) and has no definite
sign for any choice of {λn}.

It should be noted here that the form (29) cannot be made
strictly positive definite if the energy of some eigenmode is
zero, i.e. E(ξj ) = 0 for some j . As follows from (9),
such a situation is realized either when ωj = 0 (neutral
eigenmode) or when B2

j + AjCj = 0 (marginal stability
condition). To separate these two possibilities, one can
find the value of potential energy proportional to quantity C

from (5). The trial function, which minimizes U at the stability
threshold, normally corresponds to C �= 0 for non-symmetric
perturbations (B �= 0), while the neutral mode with ω = 0
always provides C = 0. There is no such difference for
symmetric modes, since B = C = ω = 0 at the stability
threshold.

It is evident that theorem 3 also covers the static case and
the case of symmetric perturbations. Taking in (27) U = E0,
we arrive at the energy principle (18). The choice U =
E1 gives the stability condition for symmetric perturbations,
which is equivalent to (25).

4.3. Example

To illustrate the developed method, we study the stability of
a cold (pressure P = 0), constant-density non-magnetized
gas rotating around gravitational centre with potential �(r).
All equilibrium quantities are assumed to depend only on the
radius r in the cylindrical system of coordinates {r, ϕ, z}. The
equilibrium velocity is then

V = r�(r)eϕ, r�2(r) = �′,
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and the prime denotes a radial derivative ∂/∂r . We look for
a solution to (1) in the form of a Fourier series, considering
perturbations in the reference frame that rotates around the
z-axis with equilibrium angular velocity �(r),

ξ(t, r) =
∑
m,kz

ξm,kz
(t, r) exp{im(ϕ − �(r)t) + ikzz}.

Equation (1) describes the dynamics of each Fourier mode (we
omit subscripts)

ξ̈ + 2�Â ξ̇ − B̂ξ = 0, (30)

where operators Â and B̂ are matrices:

Â =




0 −1 0

1 0 0

0 0 0


 , B̂ =




−r(�2)′ 0 0

0 0 0

0 0 0


 .

The stability condition for (30) is easily established by the
spectral method. Taking ξ ∼ exp(iωt), we arrive at the well-
known Rayleigh criterion (necessary and sufficient condition
for spectral stability)

4�2 + r(�2)′ � 0. (31)

Now we apply to (30) the developed variational method. First,
we note that in the present case all invariants in (26) are
local, i.e. corresponding integrands are conserved for every
spatial point (r, z). Second, perturbations described by (30)
are independent of m and symmetric—transition to the moving
reference frame eliminates all non-symmetric modes from the
system. This situation is similar to the example of section 3,
where such transition eliminates all NEWs. However, in
the present case there are still neutral modes in the system.
Therefore, the standard energy principle (U = E0 in (27))
may not give a necessary condition for stability, and modified
energy principle (U = E1) should be used. Indeed, the
invariants E0 and E1 are

E0 = 1
2 (|ξ̇|2 − ξ∗TB̂ξ)

= 1
2 (|ξ̇r |2 + |ξ̇ϕ|2 + |ξ̇z|2 + r(�2)′|ξr |2),

E1 = 1
2 (|B̂ξ − 2�Âξ̇|2 − ξ̇

∗T
B̂ξ̇)

= 1
2 (|r(�2)′ξr − 2�ξ̇ϕ|2 + (4�2 + r(�2)′)|ξ̇r |2).

If we choose U = E1, we arrive at the stability condition,
which is exactly the Rayleigh criterion (31). The standard
energy principle (U = E0) gives only the sufficient stability
condition r(�2)′ � 0, which is more restrictive than (31).

In general, if the transition to the moving reference frame
cannot eliminate all NEWs in the system, then more than one
invariant in (27) has to be used to obtain the stability criterion.

5. Summary

We have demonstrated the physical difference between
instabilities of symmetric modes (all modes in static equilibria
and modes which are uniform along the equilibrium flows)
and non-symmetric modes. Our results show that coupling of
two waves with positive (PEW) and negative energies (NEW)
can serve as a universal mechanism for any non-symmetric

MHD instabilities of flowing plasma. The energy of symmetric
eigenmodes is never negative, so the standard energy principle
(18) or its modified version (25) can be successfully applied
to study the stability of equilibrium states with respect to
symmetric perturbations. However, the energy principle fails
for non-symmetric perturbations if NEWs are possible in the
system.

To investigate the stability of flowing plasma with
respect to non-symmetric perturbations, we have developed a
variational method (theorem 3) based on the construction of the
Lyapunov functional candidate (27) by incorporating energy
with a new set of invariants (26). Under certain assumptions
this method can provide a spectral stability criterion (sufficient
and necessary condition), at least in the case of discrete eigen-
spectra.

The method is verified for a simple analytical example;
the obtained stability condition is shown to be both necessary
and sufficient. The relative simplicity of the analysis
in the considered example is due to the simple form of
dynamic operators, which are represented as finite dimensional
matrices. In the more general case, to find the adequate
stability criterion other integrals from the set (26) have to be
included in the analysis.
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Appendix A. Additivity of the energy of waves

Theorem 4. Energy of stable eigenmodes (waves) in
linearized ideal MHD is additive.

Proof. Consider a superposition of two eigenmodes with
different real eigenvalues ω1 �= ω2

ξ = c1ξ1 + c2ξ2.

The total energy of this perturbation is

E(ξ) = 1
2

∫
(ρ|ξ̇|2 − ξ∗ · F(ξ)) d3r

= |c1|2E(ξ1) + |c2|2E(ξ2)

+ 1
2c1c

∗
2

∫
(ω1ω2ρξ̂1 · ξ̂

∗
2 − ξ̂1 · F(ξ̂

∗
2))d

3r

+ 1
2c∗

1c2

∫
(ω1ω2ρξ̂

∗
1 · ξ̂2 − ξ̂

∗
1 · F(ξ̂2)) d3r.

The last two integrals in this equation are zero. Indeed,
eigenvalue problems for eigenmodes ξ1 and ξ2 are

ω2
1ρξ̂1 + 2iω1ρ(V · ∇)ξ̂1 + F(ξ̂1) = 0,

ω2
2ρξ̂

∗
2 − 2iω2ρ(V · ∇)ξ̂

∗
2 + F(ξ̂

∗
2) = 0.
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Multiplying the first equation by ω2ξ̂
∗
2 and the second one by

−ω1ξ̂1, integrating them over the plasma volume and summing
them up, we obtain

(ω1 − ω2)

∫
(ω1ω2ρξ̂1 · ξ̂

∗
2 − ξ̂1 · F(ξ̂

∗
2)) d3r = 0. (A.1)

If ω1 �= ω2 then the integral in (A.1) is zero. Therefore,

E(c1ξ1 + c2ξ2) = |c1|2E(ξ1) + |c2|2E(ξ2).

This result is easily generalized for any countable number of
eigenmodes, q.e.d. An analogous statement can be proved for
all integrals of the form (26).

Appendix B. Fredholm’s theorem for Hermitian
operators

Let L be a linear operator acting on Hilbert space H—a
complete normed space under the norm defined by a scalar
product (u, v) for any u and v from H. We use the following
definitions and theorems known from functional analysis [21].

Definition 1 (Hermitian operator). Linear operator L: H
→ H is called a Hermitian (self-adjoint) operator if for any u

and v from H
(v, Lu) = (u, Lv).

For Hermitian operators the following theorems hold.

Theorem 5. If the linear operator L is Hermitian, then all its
eigenvalues {λi} are real and its eigenfunctions, corresponding
to different eigenvalues, are orthogonal. Moreover, if a set of
eigenfunctions is countable, then they form an orthogonal basis
in H.

Theorem 6 (Fredholm). The equation

Lu = f, f ∈ H, (B.1)

where L is a Hermitian operator, can be solved for u if and
only if for all v such that Lv = 0 the condition (f, v) = 0 is
satisfied.

Proof. Necessity. If equation (B.1) has a solution u and
Lv = 0, then

(f, v) = (Lu, v) = (u, Lv) = 0.

Sufficiency. Suppose (f, v) = 0 for all v such that Lv = 0.
According to theorem 5, we can introduce in the space H
orthogonal basis {uk, vl}, where {uk} are the eigenfunctions
corresponding to non-zero eigenvalues λk �= 0 and {vl} are
eigenfunctions with zero eigenvalues, i.e. Lvl = 0. It is
obvious that the element v can be represented only as a linear
combination of {vl}. Therefore, in order to satisfy the condition

(f, v) = 0, the function f must have the following form

f =
∑

k

γkuk. (B.2)

The unknown function u is represented in general as

u =
∑

k

αkuk +
∑

l

βlvl . (B.3)

Substitution of expressions (B.2) and (B.3) into equation (B.1)
yields ∑

k

αkλkuk =
∑

k

γkuk.

Since the eigenfunctions {uk} are orthogonal (theorem 5), we
have

αk = γk

λk

. (B.4)

Taking in (B.3) coefficients αk given by (B.4) and arbitrary βl ,
we find the solution to problem (B.1), q.e.d.

In the case considered in section 4, the operator

L(ξ) = F(ξ)

ρ
(B.5)

is Hermitian (self-adjoint) in terms of the scalar product

(ξ, η) =
∫

ρξ · η d3r;

it follows immediately from property (2). Noting from (22)
that f = ζ and v = ξN and applying the Fredholm theorem to
operator (B.5), we obtain (23).
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